Global minima for semilinear optimal control problems

نویسندگان

  • Ahmad Ahmad Ali
  • Klaus Deckelnick
  • Michael Hinze
چکیده

We consider an optimal control problem subject to a semilinear elliptic PDE together with its variational discretization. We provide a condition which allows to decide whether a solution of the necessary first order conditions is a global minimum. This condition can be explicitly evaluated at the discrete level. Furthermore, we prove that if the above condition holds uniformly with respect to the discretization parameter the sequence of discrete solutions converges to a global solution of the corresponding limit problem. Numerical examples with unique global solutions are presented. Mathematics Subject Classification (2000): 49J20, 35K20, 49M05, 49M25, 49M29, 65M12, 65M60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Exact penalization of pointwise constraints for optimal control problems

Abstract: In this paper we consider a control problem governed by a semilinear elliptic equation with pointwise control and state constraints. We analyze the existence of an exact penalization of the state constraints. In particular, we prove that the first and second order optimality conditions imply the existence of such a penalization. Finally, we prove some extra regularity of the strict lo...

متن کامل

Second Order Sufficient Optimality Conditions for Parabolic Optimal Control Problems with Pointwise State Constraints

In this paper we study optimal control problems governed by semilinear parabolic equations where the spatial dimension is two or three. Moreover, we consider pointwise constraints on the control and on the state. We formulate first order necessary and second order sufficient optimality conditions. We make use of recent results regarding elliptic regularity and apply the concept of maximal parab...

متن کامل

Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces

Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...

متن کامل

A Posteriori Error Estimates for Semilinear Boundary Control Problems

In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016